MATH 4571 - Lecture Notes

Lucas Sta. Maria stamaria.l@northeastern.edu

February 28, 2024

Abstract

Studies the theory of vector spaces and linear maps and their applications, emphasizing deep understanding, proofs, and problem-solving.

Contents

 2 SUBSPACES 3 LINEAR SPAN 4 ISOMORPHISMS 5 MATRIX REPRESENTATIONS 	2
 3 LINEAR SPAN 4 ISOMORPHISMS 5 MATRIX REPRESENTATIONS 	4
4 ISOMORPHISMS5 MATRIX REPRESENTATIONS	6
5 MATRIX REPRESENTATIONS	7
	8
6 INNER PRODUCT SPACES	9
7 ORTHOGONALITY	10
8 ORTHOGONAL BASIS	11
9 BEST APPROXIMATION	12
10 LINEAR FUNCTIONALS AND ADJOINTS	13
11 EIGENVALUES AND EIGENSPACES	14
12 DIAGONALIZATION	15

1 LINEARITY

Definition 1.1

Linearity is the study of vector spaces (sets) and linear maps (transformations, linear functions).

Definition 1.2

A linear system is a system of equations that can be expressed in matrix form.

Example 1.3

The system

 $\begin{aligned} x_1 + x_3 &= 2\\ 2x_1 + x_2 + 3x_3 - 2x_4 &= 5\\ 3x_1 - 2x_2 + x_3 + 4x_4 &= 4 \end{aligned}$

can be expressed as the following matrix:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 3 & -2 \\ 3 & -2 & 1 & 4 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 2 \\ 5 \\ 4 \end{bmatrix}$$

Definition 1.4

Euclidian space is a space of dimension $k \in \mathbb{N}$, expressed as

$$\mathbb{R}^k = \{(x_1, x_2, \dots, x_k) : x_1, x_2, \dots, x_k \in \mathbb{R}\}$$

 \mathbb{R}^k is also a field.

Definition 1.5

Vector spaces respect linear combinations. That is, if $x, y \in V$ for some vector space V, then $ax + by \in V$ where $a, b \in R$ are scalar coefficients.

Definition 1.6

An $m \times n$ matrix corresponds to a linear map/transformation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
$$T(x \in \mathbb{R}^n) = Ax \in \mathbb{R}^n$$

 \mathbb{R}^n is the domain and \mathbb{R}^m is the codomain. The linear map is defined as

$$\begin{cases} T(x+y) = T(x) + T(y) \\ T(cx) = cT(x) \\ T(ax+by) = aT(x) + bT(y) \end{cases}$$

Not all maps are linear. Consider $T: \mathbb{R}^2 \to \mathbb{R}$ where T(x) = ||x||. This is not linear, since we can produce a counterexample that violates the properties of a linear map: ||(1,0)|| = 1 = ||(0,1)||, but $||(1,1)|| = \sqrt{2} \neq ||(1,0)|| + ||(0,1)||$.

Definition 1.7

We define *reduced-row echelon form* (RREF) to be the matrix obtained from gaussian elimination, with additional constraints on *row echelon form*:

- The leading entry in each row is 1.
- Each column containing a leading 1 has zeroes in all its other entries.

Example 1.8

Given the following matrix under RREF

[1]	0	1	0	2
0	1	1	-2	1
0	0	0	0	0

we can transform to equation

$$x = \begin{bmatrix} 2-s\\1-s+2t\\s\\t \end{bmatrix} = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} + s \begin{bmatrix} -1\\-1\\0\\0 \end{bmatrix} + t \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$$

where the leading variables are x_1 and x_2 , and the free variables $x_3 = s$ and $x_4 = t$.

2 SUBSPACES

January 17, 2024

Recall that a vector space $V, +, \cdot$ over some field F has closure under $+, \cdot$.

- 1. + commutative
- 2. + associative
- 3. + identity 0
- 4. + inverse -v
- 5. (ab)v = a(bv)
- $6. \ (a+b)v = av + bv$
- 7. c(v+w) = cv + cw
- 8. $1 \in F : 1v = v$

 F^S is the set of all functions $f: S \to F$. F^S is a vector space over F. We need to define addition and multiplication.

Let $f, g \in F^S$. We define addition to be (f + g)(x) = f(x) + g(x) for $x \in S$.

We define multiplication to be $c \in F$, $f \in F^S$ to be (cf)(x) = cf(x).

V1: How do we show that (f+g) is the same as (g+f)? (f+g)(x) = f(x)+g(x) = g(x)+f(x) = (g+f)(x)

V2: Should also show associativity!

$$\begin{aligned} ((f+g)+h)(x) &= (f+g)(x) + h(x) \\ &= (f(x)+g(x)) + h(x) \\ &= f(x) + (g(x)+h(x)) \\ &= f(x) + (g+h)(x) \\ &= (f+(g+h))(x) \end{aligned}$$

V3: The zero function $0_f : S \to F$, $0_f(x) = 0$, $\forall x \in S$.

V4: Additive inverse: (-f)(x) = -(f(x)). Note the inverse is $F \to S$.

The remaining vector space properties follow similarly.

Theorem 2.1

If W is a subset of a vector space V, then W is a subspace if and only if for any $v, w \in W, cv+w \in W$.

Proof. If W is a subspace, it is a vector space, and so closure of linear combinations implies that $cv + w \in W$.

If $cv + w \in W$, then W is a vector space. Because $W \subseteq V$, V1, V2, V5-V8 are automatically satisfied. So we need to show V3, V4.

- Closure of addition: Let $v, w \in W$. So $v + w = 1v + w \in W$.
- V3: $0 = (-1)v + v \in W$.
- Closure of multiplication: $x \in W$, $c \in F$ implies $cx = cx + 0 \in W$.
- **V4**: $-v = (-1)v + 0 \in W$.

Example 2.2: Examples of subspaces

• $V : \mathbb{R}^n, S : \{(x_1, \dots, x_n) : \mathbb{R}^n : x_1 + \dots + x_n = 0\}$. We can see $cx + y = c(x_1, \dots, x_n) + (y_1, \dots, y_n) = cx_1 + y_1, \dots, cx_n + y_n$. And $c \underbrace{x_1 + \dots + x_n}_{0} + \underbrace{y_1, \dots, y_n}_{0} = 0$. So, S is a subspace.

• Consider $S = \{(t, t^2) : t \in \mathbb{R}\} \subseteq \mathbb{R}^2$. Since $2\underbrace{(1, 1^2)}_{\in S} = (2, 2) \notin S$. So, S is not a subspace.

Remark 2.3: Subspace criterion.

Non-empty set W of vector space V is a subspace iff $cv + w \in W$.

In a vector space, there are two additive identities: the additive identity of the field and the additive identity of the vector space.

3 LINEAR SPAN

January 18, 2024

Definition 3.1: Span.

For the subset $S = \{v_1, \ldots, v_k\} \subseteq V$, the span(S) is the set of all linear combinations of v_1, \ldots, v_k : $c_1v_1 + \cdots + c_kv_k$ for $c_i \in F$.

Remark 3.2

Observation: Each vector space has two trivial subspaces: the zero space and itself.

Definition 3.3

The zero space is simply $\{0\}$, a singleton set of the zero vector.

Definition 3.4

The span of the empty set is the zero space.

Theorem 3.5

The span of any subset S is a subspace. It is the smallest subspace among all subspaces containing S.

Proof. Let $S = \{v_1, \ldots, v_k\} \subseteq V$. Let $v, w \in span(S)$. Then, v and w are linear combinations of v_1, \ldots, v_k . So, $v = c_1v_1 + \cdots + c_kv_k$, and $w = d_1v_1 + \cdots + d_kv_k$. cv + w is also a linear combination of v_1, \ldots, v_k . So $cv + w \in span(S)$ and span(S) is a subspace.

Let W be a subspace containing S. We want to show that $span(S) \subseteq W$. Let $x \in span(S)$. Then, x is a linear combination of v_1, \ldots, v_k and is in W since W is a subspace and contains all linear combinations of v_1, \ldots, v_k . \Box

Definition 3.6

If V = span(S), then S is a spanning set (generating set) of V.

Remark 3.7

To determine if v_1, \ldots, v_k span V, ask if there exists some $v \in V$ such that there are no $c_1, \ldots, c_k \in F^k$ where $v = c_1v_1 + \cdots + c_kv_k$.

4 ISOMORPHISMS

February 1, 2024

Theorem 4.1

 $T: V \to W$ is 1 to 1 if and only if $kerT = \{0\}$.

Theorem 4.2

 $T: V \to W$ is 1 to 1 and $v_1, \ldots, v_n \in V$ is linearly independent if and only if $T(v_1), \ldots, T(v_n) \in W$ is linearly independent.

Proof. If $c_1T(v_1) + \dots + c_nT(v_n) = 0$, then $T(c_1v_1 + \dots + c_nv_n) = 0$. Since T is 1 to 1, $kerT = \{0\}$, and $c_1v_1 + \dots + c_nv_n = 0$. Since v_i 's are linearly independent, c_i 's are zero. If $c_1v_1 + \dots + c_nv_n = 0$, then $T(c_1v_1 + \dots + c_nv_n) = T(0) = 0$. Since $T(v_1), \dots, T(v_n)$ are independent, c_i 's are zero.

Definition 4.3

 $T \rightarrow W$ is an *isomorphism* if it is 1 to 1 and onto.

Definition 4.4

V and W are *isomorphic* if there exists an isomorphism.

Theorem 4.5

An isomorphism $T: V \to W$ has a unique inverse $T^{-1}: W \to V$ that is also an isomorphism.

Proof. Only need to show T^{-1} is linear. Let $c \in F$ and $x, y \in W$. Then, x = T(v) and y = T(u) for some $v, u \in V$. If T is linear, then T(cv + u) = cT(v) + T(u) = cx + y. And $T^{-1}(cx + y) = cv + u = cT^{-1}(x) + T^{-1}(y)$.

Theorem 4.6

V, W are isomorphic if and only if $\dim(V) = \dim(W)$ for a finite dimension.

Proof. Since it's isomorphic, the kernel must be $\{0\}$ and so the nullity must be 0.

Conversely, suppose $\dim(V) = \dim(W)$. So, the basis of V is v_1, \ldots, v_n and the basis of W is w_1, \ldots, w_n . Show that the following map is an isomorphism: $T : V \to W$ where $T(c_1v_1 + \cdots + c_nv_n) = c_1w_1 + \cdots + c_nw_n$. Linear by theorem 2 of lesson 9.

To show 1 to 1, $T(c_1v_1 + \cdots + c_nv_n) = 0$ and $c_1w_1 + \cdots + c_nw_n = 0$, so the c_i 's are zero, and $kerT = \{0\}$.

To show onto, let $w \in W$ so $w = c_1w_1 + \cdots + c_nw_n$. Clearly, $T(c_1v_1 + \cdots + c_nv_n)$ can produce w.

5 MATRIX REPRESENTATIONS

February 5, 2024

Definition 5.1

Let
$$\beta : \{v_1, \dots, v_n\}$$
 be an ordered basis of V . Then the coordinate vector of $v = c_1v_1 + \dots + c_nv_n$
relative to β is $[x]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = (c_1, \dots, c_n)$, where $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in F^n$.

Theorem 5.2

The map $\phi: V \to F^n$, where $\dim(V) = n$, defined by $\phi(v) = [v]_\beta$ is an isomorphism as ϕ is linear. *Proof.* $\phi(cx + y) = [cx + y]_\beta = c[x]_\beta + [y]_\beta = c\phi(x) + \phi(y)$.

Theorem 5.3

Let $T: V \to W$ be a linear map, and $\alpha = \{v_1, \ldots, v_n\}$ and $\beta = \{w_1, \ldots, w_n\}$ be ordered bases for V and W.

6 INNER PRODUCT SPACES

February 8, 2024

Definition 6.1

Let V be a vector space over F, where $F = \mathbb{R}$ or $F = \mathbb{C}$. An *inner product* on V is a function that assigns a scalar $\langle v, w \rangle$ to each ordered pairs v, w such that for all vectors u, v, w and all scalars c,

- Linearity: < cu+v, w> = c < u, w> + < v, w>
- Conjugate symmetry: $\langle w, v \rangle = \langle v, w \rangle$
- Positive-definiteness: $\langle v, v \rangle \ge 0$; $\langle v, v \rangle = 0$ only when v = 0.

7 ORTHOGONALITY

February 13, 2024

Definition 7.1: Cauchy-Schwarz Inequality

The *Cauchy-Schwarz Inequality* states $|\langle x, y \rangle| \leq ||x|| ||y||$ where $-1 < \frac{\langle x, y \rangle}{||x|| ||y||} < 1$. So, the angle θ between two nonzero vectors x and y by $\cos \theta = \frac{\langle x, y \rangle}{||x|| ||y||}$ for $\theta \in [0, \pi)$.

Definition 7.2

Two vectors x and y are orthogonal when $\langle x, y \rangle = 0$ or the angle between them is $\frac{\pi}{2}$. A set of vectors S is an orthogonal set if every pair of vectors in S are orthogonal, and S is an orthonormal if in addition, all vectors in S has norm 1.

Theorem 7.3

An orthogonal set of nonzero vectors is linearly independent.

Proof. Let v_1, \ldots, v_n be orthogonal vectors. If $c_1v_1 + \cdots + c_nv_n = 0$, then for any $k, 0 = \langle 0, v_k \rangle = \langle c_1v_1 + \cdots + c_nv_n, v_k \rangle = c_1 \langle v_1, v_k \rangle + \cdots + c_n \langle v_n, v_k \rangle = c_k \langle v_k, v_k \rangle$. Since $\langle v_k, v_k \rangle \neq 0$, we have $c_k = 0$ for all k.

Corollary 7.4

Any orthogonal set of n nonzero vectors in an n-dimensional space V is a basis of V (orthogonal basis).

Theorem 7.5

If $S = \{v_1, \ldots, v_n\}$ is an orthogonal basis of vector space V, then for any $x \in V$, $x = c_1v_1 + \cdots + c_nv_n$, and $c_k = \frac{\langle x, v_k \rangle}{\|v_k\|^2}$.

Definition 7.6

If w_1, \ldots, w_k is an orthogonal basis of a subspace W of an inner product space V, the *orthogonal* projection of $v \in V$ into W is

$$proj_w(v) = \frac{\langle v_1, w_1 \rangle}{\|w_1\|^2} w_1 + \dots + \frac{\langle v_k, w_k \rangle}{\|w_k\|^2} w_k$$

Definition 7.7

The *orthogonal complement* of W is the set W^{\perp} of all vectors V which are perpendicular to every vector in W.

8 ORTHOGONAL BASIS

February 14, 2024

Theorem 8.1

Let v_1, \ldots, v_n be linearly independent vectors in an inner product space V, then for each $k = 1, \ldots, n$, there is an orthogonal set w_1, \ldots, w_n in V which is a basis of $V_k = span(v_1, \ldots, v_k)$.

Corollary 8.2

Every finite-dimensional inner product space V has an orthonormal basis; we simply normalize the vectors.

Corollary 8.3

Let $W = span(e_1, \ldots, e_k)$ be a subspace of an inner product space V having an orthonormal basis e_1, \ldots, e_n , then

- e_{k+1}, \ldots, e_n is an orthonormal basis of W^{\perp} .
- $V = W \oplus W^{\perp}$, and $\dim V = \dim W + \dim W^{\perp}$.

9 BEST APPROXIMATION

February 21, 2024

If we have some inconsistent linear system Ax = b, then b is not in the column space of A. The best we can do is find an *approximation* x^* such that Ax^* is as close as possible to b.

If W is a subspace of an inner product space V, for a vector $v \in V$, we are seeking a vector $w \in W$ such that $||v - w|| \le ||v - w'||$ for every $w' \in W$.

Theorem 9.1

Let W be a finite-dimensional space of inner product space V and $v \in V$. If $w = \text{proj}_W(v)$, then $||v - w|| \le ||v - w'||$ for every $w' \in W$ with equality if and only if w = w'.

10 LINEAR FUNCTIONALS AND ADJOINTS

February 22, 2024

Definition 10.1

A linear map $T: V \to F$, $T(x) = \langle x, v \rangle$ that produces a scalar is *linear functional*. To show it is linear, $T(cx + y, v) = c \langle x, v \rangle + \langle y, v \rangle = cT(x) + T(y)$.

Theorem 10.2

Let V be a finite-dimensional inner product space and T be a linear functional on V, then there is a unique $v \in V$ such that $T(x) = \langle x, v \rangle$ for all $x \in V$.

Theorem 10.3: Adjoint

For any linear map $T: V \to W$, where V and W have finite-dimensional inner product spaces, there is a unique linear map $T^*: W \to V$ such that $\langle T(v), w \rangle_W = \langle v, T^*(w) \rangle_V$ for all $v \in V$ and $w \in W$; T^* is called the *adjoint* of T.

Theorem 10.4

If $\alpha = \{v_1, \ldots, v_n\}$ and $\beta = \{w_1, \ldots, w_m\}$ are orthonormal bases of finite-dimensional inner product spaces V and W respectively, and $T: V \to W$ is a linear map, then $[T^*]^{\alpha}_{\beta} = ([T]^{\beta}_{\alpha})^*$.

Theorem 10.5

If V and W are finite-dimensional inner product spaces, and $S:V\to W$ and $T:V\to W$ are linear maps, then

- 1. $(S+T)^* = S^* + T^*$
- 2. $(cT)^* = \overline{c}T^*$
- 3. $(ST)^* = T^*S^*$
- 4. $(T^*)^* = T$

Theorem 10.6

Suppose V is a finite-dimensional inner product space and $T^*: W \to V$ is the adjoint of $T: V \to W$, then ker T and im T^* are orthogonal complements in V.

11 EIGENVALUES AND EIGENSPACES

February 26, 2024

Definition 11.1

An eigenvector v of a linear map $T: V \to V$ is a nonzero vector such that $T(v) = \lambda v$ for some scalar called the eigenvalue associated with the eigenvector v.

Theorem 11.2

For any fixed eigenvalue λ of a linear map $T: V \to V$, the set E_{λ} of all vectors $v \in V$ satisfying $T(v) = \lambda v$ is a subspace of V. This space is called the λ -eigenspace.

Proof. For any $u, v \in E_{\lambda}$, $T(cu + v) = cT(u) + T(v) = c(\lambda v) + \lambda v = \lambda(cu + v)$, so cu + v is in E_{λ} .

12 DIAGONALIZATION

February 28, 2024

Given a linear operator $T: V \to V$, we want to find a basis of V so that the matrix of T is the simplest, diagonal, if possible, for diagonal matrices are the simplest matrices.

Definition 12.1

A linear operator $T: V \to V$ on a finite-dimensional space V is *diagonalizable* if there is a basis β of V such that the matrix $[T]^{\beta}_{\beta}$ is diagonal. A square matrix A is *diagonalizable* if it is similar to a diagonal matrix.

Theorem 12.2

If A and B are similar, that is, $B = Q^{-1}AQ$, then A and B have the same characteristic polynomial and therefore the same eigenvalues (with the same algebraic multiplicities). Moreover, v is an eigenvector of B with eigenvalue λ if and only if Qv is an eigenvector of A with eigenvalue λ . It follows that the eigenspaces of A and B have the same dimensions.

Proof. Recall that similar matrices have the same determinant. So, $\det(\lambda I - B) = \det(Q^{-1}(\lambda I)Q - Q^{-1}AQ) = \det(Q^{-1}(\lambda I - A)Q) = \det(\lambda I - A)$. If $Bv = \lambda v$, then $A(Qv) = AQv = QBv = Q(\lambda v) = \lambda(Qv)$. If $A(Qv) = \lambda(Qv)$, then $Bv = Q^{-1}AQv = Q^{-1}\lambda(Qv) = \lambda v$. \Box