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Abstract

Studies the theory of vector spaces and linearmaps and their applications, emphasizing deep understanding,
proofs, and problem-solving.
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1 LINEARITY

Definition 1.1

Linearity is the study of vector spaces (sets) and linear maps (transformations, linear functions).

Definition 1.2

A linear system is a system of equations that can be expressed in matrix form.

Example 1.3

The system

x1 + x3 = 2

2x1 + x2 + 3x3 − 2x4 = 5

3x1 − 2x2 + x3 + 4x4 = 4

can be expressed as the following matrix:

1 0 1 0
2 1 3 −2
3 −2 1 4



x1

x2

x3

x4

 =

25
4



Definition 1.4

Euclidian space is a space of dimension k ∈ N, expressed as

Rk = {(x1, x2, . . . , xk) : x1, x2, . . . , xk ∈ R}

Rk is also a field.

Definition 1.5

Vector spaces respect linear combinations. That is, if x, y ∈ V for some vector space V , then ax+by ∈
V where a, b ∈ R are scalar coefficients.

Definition 1.6

An m× n matrix corresponds to a linear map/transformation

T : Rn → Rm

T (x ∈ Rn) = Ax ∈ Rm

Rn is the domain and Rm is the codomain. The linear map is defined as
T (x+ y) = T (x) + T (y)

T (cx) = cT (x)

T (ax+ by) = aT (x) + bT (y)

Not all maps are linear. Consider T : R2 → R where T (x) = ||x||. This is not linear, since we can
produce a counterexample that violates the properties of a linear map: ||(1, 0)|| = 1 = ||(0, 1)||, but
||(1, 1)|| =

√
2 ̸= ||(1, 0)||+ ||(0, 1)||.
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Definition 1.7

We define reduced-row echelon form (RREF) to be the matrix obtained from gaussian elimination, with
additional constraints on row echelon form:

• The leading entry in each row is 1.

• Each column containing a leading 1 has zeroes in all its other entries.

Example 1.8

Given the following matrix under RREF 1 0 1 0 2
0 1 1 −2 1
0 0 0 0 0


we can transform to equation

x =


2− s

1− s+ 2t
s
t

 =


2
1
0
0

+ s


−1
−1
0
0

+ t


0
1
0
1


where the leading variables are x1 and x2, and the free variables x3 = s and x4 = t.
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2 SUBSPACES

January 17, 2024

Recall that a vector space V,+, · over some field F has closure under +, ·.

1. + commutative

2. + associative

3. + identity 0

4. + inverse −v

5. (ab)v = a(bv)

6. (a+ b)v = av + bv

7. c(v + w) = cv + cw

8. 1 ∈ F : 1v = v

FS is the set of all functions f : S → F . FS is a vector space over F . We need to define addition and
multiplication.

Let f, g ∈ FS . We define addition to be (f + g)(x) = f(x) + g(x) for x ∈ S.

We define multiplication to be c ∈ F, f ∈ FS to be (cf)(x) = cf(x).

V1: How dowe show that (f+g) is the same as (g+f)? (f+g)(x) = f(x)+g(x) = g(x)+f(x) = (g+f)(x)

V2: Should also show associativity!

((f + g) + h)(x) = (f + g)(x) + h(x)

= (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x))

= f(x) + (g + h)(x)

= (f + (g + h))(x)

V3: The zero function 0f : S → F , 0f (x) = 0, ∀x ∈ S.

V4: Additive inverse: (−f)(x) = −(f(x)). Note the inverse is F → S.

The remaining vector space properties follow similarly.

Theorem 2.1

IfW is a subset of a vector space V , thenW is a subspace if and only if for any v, w ∈ W , cv+w ∈ W .

Proof. If W is a subspace, it is a vector space, and so closure of linear combinations implies that
cv + w ∈ W .
If cv+w ∈ W , thenW is a vector space. BecauseW ⊆ V , V1, V2, V5-V8 are automatically satisfied.
So we need to show V3, V4.

• Closure of addition: Let v, w ∈ W . So v + w = 1v + w ∈ W .

• V3: 0 = (−1)v + v ∈ W .

• Closure of multiplication: x ∈ W , c ∈ F implies cx = cx+ 0 ∈ W .

• V4: −v = (−1)v + 0 ∈ W .
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Example 2.2: Examples of subspaces

• V : Rn, S : {(x1, . . . , xn) : Rn : x1 + · · ·+ xn = 0}. We can see cx + y = c(x1, . . . , xn) +
(y1, . . . , yn) = cx1 + y1, . . . , cxn + yn. And c x1 + · · ·+ xn︸ ︷︷ ︸

0

+ y1, · · · , yn︸ ︷︷ ︸
0

= 0. So, S is a

subspace.

• Consider S =
{
(t, t2) : t ∈ R

}
⊆ R2. Since 2 (1, 12)︸ ︷︷ ︸

∈S

= (2, 2) ̸∈ S. So, S is not a subspace.

Remark 2.3: Subspace criterion.

Non-empty set W of vector space V is a subspace iff cv + w ∈ W .

In a vector space, there are two additive identities: the additive identity of the field and the additive identity
of the vector space.
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3 LINEAR SPAN
January 18, 2024

Definition 3.1: Span.

For the subset S = {v1, . . . , vk} ⊆ V , the span(S) is the set of all linear combinations of v1, . . . , vk:
c1v1 + · · ·+ ckvk for ci ∈ F .

Remark 3.2

Observation: Each vector space has two trivial subspaces: the zero space and itself.

Definition 3.3

The zero space is simply {0}, a singleton set of the zero vector.

Definition 3.4

The span of the empty set is the zero space.

Theorem 3.5

The span of any subset S is a subspace. It is the smallest subspace among all subspaces containing S.

Proof. Let S = {v1, . . . , vk} ⊆ V . Let v, w ∈ span(S). Then, v and w are linear combinations of
v1, . . . , vk . So, v = c1v1+ · · ·+ckvk , andw = d1v1+ · · ·+dkvk . cv+w is also a linear combination
of v1, . . . , vk . So cv + w ∈ span(S) and span(S) is a subspace.
Let W be a subspace containing S. We want to show that span(S) ⊆ W . Let x ∈ span(S). Then,
x is a linear combination of v1, . . . , vk and is in W since W is a subspace and contains all linear
combinations of v1, . . . , vk .

Definition 3.6

If V = span(S), then S is a spanning set (generating set) of V .

Remark 3.7

To determine if v1, . . . , vk span V , ask if there exists some v ∈ V such that there are no c1, . . . , ck ∈
F k where v = c1v1 + · · ·+ ckvk .
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4 ISOMORPHISMS
February 1, 2024

Theorem 4.1

T : V → W is 1 to 1 if and only if kerT = {0}.

Theorem 4.2

T : V → W is 1 to 1 and v1, . . . , vn ∈ V is linearly independent if and only if T (v1), . . . , T (vn) ∈ W
is linearly independent.

Proof. If c1T (v1)+ · · ·+cnT (vn) = 0, then T (c1v1+ · · ·+cnvn) = 0. Since T is 1 to 1, kerT = {0},
and c1v1 + · · ·+ cnvn = 0. Since vi’s are linearly independent, ci’s are zero.
If c1v1 + · · · + cnvn = 0, then T (c1v1 + · · · + cnvn) = T (0) = 0. Since T (v1), . . . , T (vn) are
independent, ci’s are zero.

Definition 4.3

T → W is an isomorphism if it is 1 to 1 and onto.

Definition 4.4

V andW are isomorphic if there exists an isomorphism.

Theorem 4.5

An isomorphism T : V → W has a unique inverse T−1 : W → V that is also an isomorphism.

Proof. Only need to show T−1 is linear. Let c ∈ F and x, y ∈ W . Then, x = T (v) and y = T (u)
for some v, u ∈ V . If T is linear, then T (cv + u) = cT (v) + T (u) = cx + y. And T−1(cx + y) =
cv + u = cT−1(x) + T−1(y).

Theorem 4.6

V,W are isomorphic if and only if dim(V ) = dim(W ) for a finite dimension.

Proof. Since it’s isomorphic, the kernel must be {0} and so the nullity must be 0.
Conversely, suppose dim(V ) = dim(W ). So, the basis of V is v1, . . . , vn and the basis of
W is w1, . . . , wn. Show that the following map is an isomorphism: T : V → W where
T (c1v1 + · · ·+ cnvn︸ ︷︷ ︸

∈V

) = c1w1 + · · ·+ cnwn. Linear by theorem 2 of lesson 9.

To show 1 to 1, T (c1v1 + · · · + cnvn) = 0 and c1w1 + · · · + cnwn = 0, so the ci’s are zero, and
kerT = {0}.
To show onto, let w ∈ W so w = c1w1 + · · · + cnwn. Clearly, T (c1v1 + · · · + cnvn) can produce
w.
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5 MATRIX REPRESENTATIONS
February 5, 2024

Definition 5.1

Let β : {v1, . . . , vn} be an ordered basis of V . Then the coordinate vector of v = c1v1 + · · · + cnvn

relative to β is [x]β =

c1...
cn

 = (c1, . . . , cn), where

c1...
cn

 ∈ Fn.

Theorem 5.2

The map ϕ : V → Fn, where dim(V ) = n, defined by ϕ(v) = [v]β is an isomorphism as ϕ is linear.

Proof. ϕ(cx+ y) = [cx+ y]β = c[x]β + [y]β = cϕ(x) + ϕ(y).

Theorem 5.3

Let T : V → W be a linear map, and α = {v1, . . . , vn} and β = {w1, . . . , wn} be ordered bases for
V andW .
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6 INNER PRODUCT SPACES
February 8, 2024

Definition 6.1

Let V be a vector space over F , where F = R or F = C. An inner product on V is a function that
assigns a scalar < v,w > to each ordered pairs v, w such that for all vectors u, v, w and all scalars c,

• Linearity: < cu+ v, w >= c < u,w > + < v,w >

• Conjugate symmetry: < w, v >= ¯< v,w >

• Positive-definiteness: < v, v >≥ 0; < v, v >= 0 only when v = 0.
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7 ORTHOGONALITY
February 13, 2024

Definition 7.1: Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality states |⟨x, y⟩| ≤ ∥x∥∥y∥ where −1 < ⟨x,y⟩
∥x∥∥y∥ < 1. So, the angle θ

between two nonzero vectors x and y by cos θ = ⟨x,y⟩
∥x∥∥y∥ for θ ∈ [0, π).

Definition 7.2

Two vectors x and y are orthogonal when ⟨x, y⟩ = 0 or the angle between them is π
2 . A set of vectors

S is an orthogonal set if every pair of vectors in S are orthogonal, and S is an orthonormal if in
addition, all vectors in S has norm 1.

Theorem 7.3

An orthogonal set of nonzero vectors is linearly independent.

Proof. Let v1, . . . , vn be orthogonal vectors. If c1v1 + · · ·+ cnvn = 0, then for any k, 0 = ⟨0, vk⟩ =
⟨c1v1 + · · ·+ cnvn, vk⟩ = c1 ⟨v1, vk⟩+ · · ·+ cn ⟨vn, vk⟩ = ck ⟨vk, vk⟩. Since ⟨vk, vk⟩ ≠ 0, we have
ck = 0 for all k.

Corollary 7.4

Any orthogonal set of n nonzero vectors in an n-dimensional space V is a basis of V (orthogonal
basis).

Theorem 7.5

If S = {v1, . . . , vn} is an orthogonal basis of vector space V , then for any x ∈ V , x = c1v1 + · · ·+
cnvn, and ck = ⟨x,vk⟩

∥vk∥2 .

Definition 7.6

If w1, . . . , wk is an orthogonal basis of a subspace W of an inner product space V , the orthogonal
projection of v ∈ V into W is

projw(v) =
⟨v1, w1⟩
∥w1∥2

w1 + · · ·+ ⟨vk, wk⟩
∥wk∥2

wk

Definition 7.7

The orthogonal complement of W is the set W⊥ of all vectors V which are perpendicular to every
vector in W .
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8 ORTHOGONAL BASIS
February 14, 2024

Theorem 8.1

Let v1, . . . , vn be linearly independent vectors in an inner product space V , then for each k =
1, . . . , n, there is an orthogonal set w1, . . . , wn in V which is a basis of Vk = span(v1, . . . , vk).

Corollary 8.2

Every finite-dimensional inner product space V has an orthonormal basis; we simply normalize the
vectors.

Corollary 8.3

Let W = span(e1, . . . , ek) be a subspace of an inner product space V having an orthonormal basis
e1, . . . , en, then

• ek+1, . . . , en is an orthonormal basis of W⊥.

• V = W ⊕W⊥, and dimV = dimW + dimW⊥.
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9 BEST APPROXIMATION
February 21, 2024

If we have some inconsistent linear system Ax = b, then b is not in the column space of A. The best we can
do is find an approximation x∗ such that Ax∗ is as close as possible to b.
If W is a subspace of an inner product space V , for a vector v ∈ V , we are seeking a vector w ∈ W such
that ∥v − w∥ ≤ ∥v − w′∥ for every w′ ∈ W .

Theorem 9.1

Let W be a finite-dimensional space of inner product space V and v ∈ V . If w = projW (v), then
∥v − w∥ ≤ ∥v − w′∥ for every w′ ∈ W with equality if and only if w = w′.
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10 LINEAR FUNCTIONALS AND ADJOINTS

February 22, 2024

Definition 10.1

A linear map T : V → F , T (x) = ⟨x, v⟩ that produces a scalar is linear functional. To show it is
linear, T (cx+ y, v) = c ⟨x, v⟩+ ⟨y, v⟩ = cT (x) + T (y).

Theorem 10.2

Let V be a finite-dimensional inner product space and T be a linear functional on V , then there is a
unique v ∈ V such that T (x) = ⟨x, v⟩ for all x ∈ V .

Theorem 10.3: Adjoint

For any linear map T : V → W , where V and W have finite-dimensional inner product spaces,
there is a unique linear map T ∗ : W → V such that ⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V for all v ∈ V and
w ∈ W ; T ∗ is called the adjoint of T .

Theorem 10.4

If α = {v1, . . . , vn} and β = {w1, . . . , wm} are orthonormal bases of finite-dimensional inner prod-
uct spaces V andW respectively, and T : V → W is a linear map, then [T ∗]αβ =

(
[T ]βα

)∗.
Theorem 10.5

If V andW are finite-dimensional inner product spaces, and S : V → W and T : V → W are linear
maps, then

1. (S + T )∗ = S∗ + T ∗

2. (cT )∗ = cT ∗

3. (ST )∗ = T ∗S∗

4. (T ∗)∗ = T

Theorem 10.6

Suppose V is a finite-dimensional inner product space and T ∗ : W → V is the adjoint of T : V → W ,
then kerT and imT ∗ are orthogonal complements in V .
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11 EIGENVALUES AND EIGENSPACES
February 26, 2024

Definition 11.1

An eigenvector v of a linear map T : V → V is a nonzero vector such that T (v) = λv for some scalar
called the eigenvalue associated with the eigenvector v.

Theorem 11.2

For any fixed eigenvalue λ of a linear map T : V → V , the set Eλ of all vectors v ∈ V satisfying
T (v) = λv is a subspace of V . This space is called the λ-eigenspace.

Proof. For any u, v ∈ Eλ, T (cu + v) = cT (u) + T (v) = c(λv) + λv = λ(cu + v), so cu + v is in
Eλ.
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12 DIAGONALIZATION
February 28, 2024

Given a linear operator T : V → V , we want to find a basis of V so that the matrix of T is the simplest,
diagonal, if possible, for diagonal matrices are the simplest matrices.

Definition 12.1

A linear operator T : V → V on a finite-dimensional space V is diagonalizable if there is a basis β
of V such that the matrix [T ]ββ is diagonal. A square matrix A is diagonalizable if it is similar to a
diagonal matrix.

Theorem 12.2

If A and B are similar, that is, B = Q−1AQ, then A and B have the same characteristic polynomial
and therefore the same eigenvalues (with the same algebraic multiplicities). Moreover, v is an eigen-
vector of B with eigenvalue λ if and only if Qv is an eigenvector of A with eigenvalue λ. It follows
that the eigenspaces of A and B have the same dimensions.

Proof. Recall that similar matrices have the same determinant. So, det(λI−B) = det(Q−1(λI)Q−
Q−1AQ) = det(Q−1(λI − A)Q) = det(λI − A). If Bv = λv, then A(Qv) = AQv = QBv =
Q(λv) = λ(Qv). If A(Qv) = λ(Qv), then Bv = Q−1AQv = Q−1λ(Qv) = λv.
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