MATH 4571 - Lecture Notes

stamaria.lenortheastern. edu

Studies the theory of vector spaces and linear maps and their applications, emphasizing deep understanding,

proofs, and problem-solving.
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1 LINEARITY

Definition 1.1

Linearity is the study of vector spaces (sets) and linear maps (transformations, linear functions).

Definition 1.2

A linear system is a system of equations that can be expressed in matrix form.

Example 1.3
The system

1+ 23 =2
201 + a9 + 313 — 2204 =5
3£C1—2£L’2+£L‘3+41’4:4

can be expressed as the following matrix:

I

1 0 1 0 2
2 1 3 2| |® =5
3 —2 1 4] |™ 4
Lq
Definition 1.4
Euclidian space is a space of dimension k € N, expressed as
RF = {(z1,z2,...,2) : T1, T2, ...,z € R}

R” is also a field.

Definition 1.5

Vector spaces respect linear combinations. That is, if z, y € V for some vector space V, then ax+by €
V where a,b € R are scalar coeflicients.

Definition 1.6
An m X n matrix corresponds to a linear map/transformation
T:R" - R™
T(x e R") = Az € R™
R™ is the domain and R™ is the codomain. The linear map is defined as
T(z+y)=T(=)+T(y)

T(cx) = T (x)
T(az + by) = aT'(z) + T (y)
Not all maps are linear. Consider 7" : R? — R where T'(z) = ||z||. This is not linear, since we can

produce a counterexample that violates the properties of a linear map: ||(1,0)|| = 1 = |[|(0,1)]|, but

1L DI = v2 # 11, 0] + [1(0, DI



Definition 1.7

We define reduced-row echelon form (RREF) to be the matrix obtained from gaussian elimination, with
additional constraints on row echelon form:

« The leading entry in each row is 1.

« Each column containing a leading 1 has zeroes in all its other entries.

Example 1.8

Given the following matrix under RREF

1 0 1 0|2

011 -2|1

0 0 0 00

we can transform to equation

2—s 2 -1 0
1—5+2¢ 1 -1 1
=1 s [T lo|l T o T o
t 0 0 1

where the leading variables are z; and z2, and the free variables z3 = s and x4 = .



2 SUBSPACES

FJanuary 17, 2024

Recall that a vector space V, +, - over some field F" has closure under +, -.

1. + commutative
2. + associative
3. + identity 0
4. + inverse —v
5. (ab)v = a(bv)
6. (a+b)v=av+ bv
7. c(v+w) =cv+cw
8. 1leF:lv=v
FS is the set of all functions f : S — F. F¥ is a vector space over . We need to define addition and
multiplication.
Let f,g € F'S. We define addition to be (f + g)(z) = f(z) + g(x) forz € S.
We define multiplication to be ¢ € F, f € F¥ to be (cf)(x) = cf(x).
V1: How do we show that ( f+g¢) is the same as (g+ f)? (f+9)(z) = f(z)+g9(z) = g(x)+f(z) = (9+f)(z)

V2: Should also show associativity!

V3: The zero function 0y : S — F,0¢(z) =0,Vx € S.
V4: Additive inverse: (—f)(z) = —(f(z)). Note the inverse is ' — S.

The remaining vector space properties follow similarly.

Theorem 2.1
If W is a subset of a vector space V, then W is a subspace if and only if for any v, w € W, cv+w € W.

Proof. If W is a subspace, it is a vector space, and so closure of linear combinations implies that
co+weW.

If cv+w € W, then W is a vector space. Because W C V V1, V2, V5-V8 are automatically satisfied.
So we need to show V3, V4.

« Closure of addition: Let v,w € W.Sov+w =1v+w € W.
e V3:0=(-1)v+veW.
« Closure of multiplication: x € W, ¢ € F impliescx =cx +0 € W.

e V4 —v=(-1)v+0eW.



Example 2.2: Examples of subspaces

« VR™ S : {(z1,...,2,) R :29+ -+ 2, =0}. Wecansee cx +y = c(x1,...,2Tp) +
(Y1,--,Yn) = ¢¥1 +Y1,---,CTp + Yn. And cx1 + -+ Xy + 91, - ,Yn = 0. So, S is a

0 0
subspace.

- Consider S = {(¢,t) : t € R} C R% Since 2(1,1%) = (2,2) € S. So, S is not a subspace.
~——

es

Remark 2.3: Subspace criterion.

Non-empty set W of vector space V' is a subspace iff cv +w € W.

In a vector space, there are two additive identities: the additive identity of the field and the additive identity
of the vector space.



3 LINEAR SPAN

FJanuary 18, 2024

Definition 3.1: Span.

For the subset S = {vy,...,vr} C V, the span(S) is the set of all linear combinations of vy, . . ., vg:
c1v1 + -+ cpvg fore; € F.
Remark 3.2

Observation: Each vector space has two trivial subspaces: the zero space and itself.

Definition 3.3

The zero space is simply {0}, a singleton set of the zero vector.

Definition 3.4

The span of the empty set is the zero space.

Theorem 3.5
The span of any subset S is a subspace. It is the smallest subspace among all subspaces containing S.

Proof. Let S = {v1,...,v05} C V. Let v,w € span(S). Then, v and w are linear combinations of
Vlyeeo, Vg SO,V = €101 + - - -+ CLVE, and w = dyvy + - - - +dpvg. cv+w is also a linear combination
of vy,..., vk So cv +w € span(S) and span(S) is a subspace.

Let W be a subspace containing S. We want to show that span(S) C W. Let z € span(S). Then,
z is a linear combination of vy, ..., v, and is in W since W is a subspace and contains all linear
combinations of vy, ..., vg. ]

Definition 3.6

If V = span(S), then S is a spanning set (generating set) of V.

Remark 3.7

To determine if vy, . . ., v, span V, ask if there exists some v € V such that there are no ¢y, ..., ¢, €
F* where v = cyv1 + - - - + v



4 ISOMORPHISMS

February 1, 2024
Theorem 4.1

T:V — Wis1tolifand only if kerT = {0}.

Theorem 4.2

T:V - Wisltolanduvy,...,v, € Vislinearly independent if and only if T'(vy), ..., T(v,) € W
is linearly independent.

Proof. Ifc1T(v1)+- - +epnT(vy,) =0, then T (civ1+- - - +cpvy) = 0. Since T'is 1 to 1, kerT = {0},
and cqvy + - - - + ¢, v, = 0. Since v;’s are linearly independent, ¢;’s are zero.

If ;v + -+ + cpu, = 0, then T'(civ1 + -+ - + cpv,) = T(0) = 0. Since T'(vy),...,T(vy,) are
independent, ¢;’s are zero. O

Definition 4.3

T — W is an isomorphism if it is 1 to 1 and onto.

Definition 4.4

V and W are isomorphic if there exists an isomorphism.

Theorem 4.5

An isomorphism 7' : V' — W has a unique inverse 7' : W — V that is also an isomorphism.

Proof. Only need to show 7'~ ! is linear. Let ¢ € F and x,y € W. Then, x = T(v) and y = T (u)
for some v,u € V. If T is linear, then T'(cv + u) = ¢T'(v) + T(u) = cx +y. And T (cx +y) =
cv+u=clT )+ T y). O

Theorem 4.6

V, W are isomorphic if and only if dim (V') = dim(W) for a finite dimension.

Proof. Since it’s isomorphic, the kernel must be {0} and so the nullity must be 0.
Conversely, suppose dim(V) = dim(WW). So, the basis of V is vy,...,v, and the basis of
W is wy,...,w,. Show that the following map is an isomorphism: 7" : V — W where
T(civ1 + -+ + ¢cpvy) = cwy + -+ - + cpw,,. Linear by theorem 2 of lesson 9.

—_——

ev
To show 1 to 1, T'(civ1 + -+ + ¢pvn) = 0 and cqwy + -+ - + c,w, = 0, so the ¢;’s are zero, and
kerT = {0}.
To show onto, let w € W so w = cywy + -+ - + ¢pwy,. Clearly, T(civ1 + - - - + ¢,vy,) can produce
w. L]



5 MATRIX REPRESENTATIONS

February 5, 2024

Definition 5.1

Let 8 : {v1,...,v,} be an ordered basis of V. Then the coordinate vector of v = civ1 + - -+ + cpv,
C1 C1

relative to B is [z]g = | ! | = (c1,...,¢pn), where | 1 | € F".
Cn Cn

Theorem 5.2

The map ¢ : V. — F", where dim(V') = n, defined by ¢(v) = [v]g is an isomorphism as ¢ is linear.

Proof. ¢(cz +y) = [cx +ylp = clz]p + [ylsg = cd(z) + ¢(y). O

Theorem 5.3

LetT : V — W be a linear map, and o = {vy,...,v,} and § = {wy, ..., w,} be ordered bases for
Vand W.



6 INNER PRODUCT SPACES

February 8, 2024
Definition 6.1

Let V be a vector space over I, where F' = R or I’ = C. An inner product on V is a function that
assigns a scalar < v, w > to each ordered pairs v, w such that for all vectors u, v, w and all scalars c,

o Linearity: < cu +v,w >=c<u,w > + < v,w >
« Conjugate symmetry: < w,v >= < v,w >

« Positive-definiteness: < v,v >> 0; < v,v >= 0 only when v = 0.



7 ORTHOGONALITY

February 13, 2024

Definition 7.1: Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality states |(z,y)| < ||z|/||y|| where —1 < m < 1. So, the angle ¢
between two nonzero vectors 2 and y by cos § = % for 0 € [0, 7).

Definition 7.2

Two vectors x and y are orthogonal when (x, ) = 0 or the angle between them is 7. A set of vectors

S is an orthogonal set if every pair of vectors in S are orthogonal, and S is an orthonormal if in
addition, all vectors in S has norm 1.

Theorem 7.3

An orthogonal set of nonzero vectors is linearly independent.

Proof. Let vy, ..., v, be orthogonal vectors. If ¢;v1 + - - - + ¢pv, = 0, then for any k, 0 = (0, vg) =
(crv1 + -+ 4 Cpn, V) = 1 (U1, 0E) + -+ - + e (Un, VE) = ¢k (Vk, V). Since (vg, vg) # 0, we have
¢, = 0 for all &. O
Corollary 7.4

Any orthogonal set of n nonzero vectors in an n-dimensional space V' is a basis of V' (orthogonal
basis).

Theorem 7.5

If S = {v1,...,v,} is an orthogonal basis of vector space V, then forany z € V, x = cjvu; + -+ +
CnUn, and c; = m :ﬁg .

Definition 7.6

If wy, ..., wy is an orthogonal basis of a subspace W of an inner product space V, the orthogonal
projection of v € V into W is

projy(v) = ~———*=
Definition 7.7

The orthogonal complement of W is the set W+ of all vectors V which are perpendicular to every
vector in W.

10



8 ORTHOGONAL BASIS

February 14, 2024

Theorem 8.1

Let vy, ...,v, be linearly independent vectors in an inner product space V, then for each k =
1,...,n, there is an orthogonal set wy, . .., w, in V which is a basis of V}, = span(vy, ..., vg).
Corollary 8.2

Every finite-dimensional inner product space V' has an orthonormal basis; we simply normalize the
vectors.

Corollary 8.3

Let W = span(ey, ..., ex) be a subspace of an inner product space V having an orthonormal basis
e1,...,€en, then

e €k+1,---,6En is an orthonormal basis of wt.

cV=WeW anddimV = dim W + dim W+.

11



9 BEST APPROXIMATION

February 21, 2024

If we have some inconsistent linear system Ax = b, then b is not in the column space of A. The best we can
do is find an approximation x* such that Az* is as close as possible to b.

If W is a subspace of an inner product space V, for a vector v € V, we are seeking a vector w € W such
that ||v — w|| < ||v — w’|| for every w’ € W.

Theorem 9.1

Let W be a finite-dimensional space of inner product space V and v € V. If w = projy, (v), then
lv — w| < |lv — w| for every w’ € W with equality if and only if w = w’'.

12



10 LINEAR FUNCTIONALS AND ADJOINTS

February 22, 2024
Definition 10.1
Alinearmap T : V — F, T(xz) = (x,v) that produces a scalar is linear functional. To show it is
linear, T'(cx + y,v) = ¢ {x,v) + (y,v) = cT(x) + T (y).
Theorem 10.2
Let V be a finite-dimensional inner product space and 7 be a linear functional on V/, then there is a

unique v € V such that T'(z) = (z,v) forallz € V.

Theorem 10.3: Adjoint

For any linear map 7' : V' — W, where V' and W have finite-dimensional inner product spaces,
there is a unique linear map 7% : W — V such that (T'(v),w)y, = (v,T*(w)),, for allv € V and
w € W; T* is called the adjoint of T'.

Theorem 10.4

Ifa={vy,...,v,}and 8 = {wy,...,w,} are orthonormal bases of finite-dimensional inner prod-
uct spaces V and W respectively, and 7" : V' — W is a linear map, then [T7]§ = ([15) .

Theorem 10.5

If V and W are finite-dimensional inner product spaces,and S : V. — Wand T : V' — W are linear
maps, then

1. (S+T) =8*+T*

2. (cI)* =eT*

w

- (
. (ST)* = T*S*
- (

4 (T =T

Theorem 10.6

Suppose V is a finite-dimensional inner product space and 7" : W — V isthe adjointof 7" : V' — W,
then ker 7" and im 7™ are orthogonal complements in V.

13



11 EIGENVALUES AND EIGENSPACES

February 26, 2024
Definition 11.1
An eigenvector v of alinear map 7' : V' — V' is a nonzero vector such that 7'(v) = Av for some scalar
called the eigenvalue associated with the eigenvector v.
Theorem 11.2

For any fixed eigenvalue A of a linear map 7" : V' — V/, the set E of all vectors v € V satisfying
T'(v) = Av is a subspace of V. This space is called the A-eigenspace.

Proof. For any u,v € Ex, T'(cu +v) = ¢T'(u) + T(v) = c¢(Av) + Av = A(cu + v), so cu + v is in
E;. O

14



12 DIAGONALIZATION

February 28, 2024

Given a linear operator 7' : V' — V, we want to find a basis of V' so that the matrix of T is the simplest,
diagonal, if possible, for diagonal matrices are the simplest matrices.

Definition 12.1

A linear operator 7" : V' — V on a finite-dimensional space V' is diagonalizable if there is a basis
of V such that the matrix [T’ ]2 is diagonal. A square matrix A is diagonalizable if it is similar to a
diagonal matrix.

Theorem 12.2

If A and B are similar, that is, B = Q' AQ, then A and B have the same characteristic polynomial
and therefore the same eigenvalues (with the same algebraic multiplicities). Moreover, v is an eigen-
vector of B with eigenvalue ) if and only if Qv is an eigenvector of A with eigenvalue \. It follows
that the eigenspaces of A and B have the same dimensions.

Proof. Recall that similar matrices have the same determinant. So, det(A\] — B) = det(Q~1(A\)Q —
Q7rAQ) = det(Q7H(AN — A)Q) = det(A\ — A). If Bu = v, then A(Qu) = AQu = QBv =
Q) = M(Qu). If A(Qv) = A\(Qu), then Bv = Q71 AQu = QI A\(Qv) = \v. O

15
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