
CS 3800 - Lecture Notes
Lucas Sta. Maria

stamaria.l@northeastern.edu

October 2, 2023

Contents
1 LECTURE 1 3

2 LECTURE 2 5

3 LECTURE 3 8

4 LECTURE 4 10

5 LECTURE 5 12

6 LECTURE 6 14

7 LECTURE 7 16

1

Preface
These are my compiled lecture notes for CS 3800 - Theory of Computation at Northeastern University for the Fall
2023 semester. The core content of these notes are taken during lectures, and then supported with additional
definitions and examples from the textbook. These notes are written to be more a reference than pedagogic
material.

The textbook for this course is Introduction to the Theory of Computation, 3rd edition, by Michael Sipser. It’s
a fairly nice textbook, and if you’re enrolled in the course I do recommend reading it. I took this class with the
professor Daniel Wichs.

The latest version of these notes are accessible through https://files.priime.dev/toc.pdf
directly. You can additionally view notes I’ve taken for other classes at https://priime.dev/notes.

If you’re interested in my workflow, I use Emacs with the AucTex and CDLaTeX packages to quickly typeset
the document. It is efficient enough to keep up during lectures.

There are bound to be mistakes and inaccuracies – if you identify them, feel free to share corrections to my
email.

– Lucas

2

1 LECTURE 1

Definition 1.1. Theory of computation is about understanding the fundamental capabilities and limitations
of computers.

Definition 1.2. Informal: A computation is a clearly specified procedure consisting of simple operations.

Definition 1.3. Informal: Automata theory is about modeling computation without memory.

• The finite automaton model is used in text processing
• The context-free grammar model is used in programming languages and artificial intelligence.

Definition 1.4. Informal: A finite automata is a machine with a fixed finite number of states that does not
have memory. It is simple and elegant, modeling simple physical devices.

Definition 1.5. Informal: A turing machine is similar to a finite automata but with an unbounded length of
memory tape. Turing machines can compute everything that any known computer can, using roughly the
same number of steps.

Definition 1.6. Informal: Computability is about problems that can and cannot be computed.

• Can we decide whether programs terminate or run forever?
• Can we determine the truthiness of mathematical statements?

Definition 1.7. Informal: Complexity theory is about what can be computed efficiently.

• Are there problems where verifying a solution is efficient, but finding a solution is not?
• What makes some problems computationally hard and others easy?

Aside 1.8. What options do we have when we encounter a computationally hard problem?

• By understanding which aspect of the problem is at the root of the difficulty, you may be able to alter
it so that the problem is more easily solvable.

• You may be able to settle for less than a perfect solution of the problem (approximation).
• Some problems are hard only in the worst case situation, but easy most of the time. In other words, a

solution can run occasionally slow, but on average at a reasonable speed. You may use this solution if
you can tolerate the occasional slowness.

• You may consider alternative types of computation, such as randomized computation, that can speed
up certain tasks.

Aside 1.9. In complexity theory, the objective is to classify problems as easy ones and hard ones; whereas
in computability theory, the classification of problems is by those that are solvable and those that are not.

Definition 1.10. Let Σ (or also Γ) be a nonempty finite set, called the alphabet. The elements of Σ are called
symbols.
The strings over Σ are tuples written as w = w1w2...wn where each wj ∈ Σ.

Definition 1.11. A string over an alphabet is a finite sequence of symbols from that alphabet, usually written
next to one another and not separated by commas.

Example 1.12. Consider the alphabet Σ1 = {0,1}.
Let w1 = 01001. Then, w1 is a string over Σ1.
Let w2 = 01201. w2 is not a string over Σ1, since 2 is not in the alphabet Σ1.

Definition 1.13. The length of a string w is denoted |w|. There is a special string of length 0, called the
empty string and denoted by ϵ.

Definition 1.14. The set of strings over Σ as

Σ∗ = UiΣ
i = Σ0 ∪ Σ1 ∪ · · ·

where Σ0 = {ϵ}

3

Definition 1.15. A string v is a substring of w if its symbols appear consecutively in w.
The empty string ϵ is a substring of every string. Any string v is a substring of itself.

Aside 1.16. This class will focus on computing functions

f : Σ∗ ⇒ {accept, reject}

We want inputs to be strings since we can encode any input as a string.
We want outputs to be boolean because

• Simplicity: already captures many interesting functions
• Powerful enough that most results will easily generalize

Definition 1.17. A language L over the alphabet Σ is a subset L ⊆ Σ∗. A language may be finite or infinite.
An equivalence exists between languages L ⊆ Σ∗ and functions f : Σ∗ ⇒ {0, 1}:

• Given f, we can define L = {w : f(w) = accept }.
• Given L, we can define f(w) = accept iff w ∈ L.

Computing f(w) is the same as deciding if w ∈ L.

Definition 1.18. Deciding a language L means giving a “program” (e.g. automaton, Turing Machine, …) that
accepts inputs w ∈ L and rejects w ̸∈ L.

Aside 1.19. Our Goal
Study different models of computation and ask, what languages can we decide/compute in this model?

Aside 1.20. Observation

• Languages can be finite or infinite.
• In each of our models of computation, a “program” has a finite description.
• A program that decides a language, gives us a finite description of a language which might be infinite.

4

2 LECTURE 2

Definition 2.1. Deterministic finite automata are a very simple and limited model of computation, consisting
of states and transitions. Transitions are labeled with symbols of the alphabetΣ. For each state, there is exactly
one outgoing transition labeled with each alphabet symbol.
Definition 2.2. A state diagram is a graphical representation of a finite automaton, explicitly showing the
automatons states and transitions.
Example 2.3. Simple example of a state diagram representing a finite automaton that accepts input if ter-
minating in 1. q1 is labeled as an accepting state, while q0’s lack of inner ring indicates it is a rejecting state.
The output is either accept or reject, depending on the state after a string’s last symbol has been read.

q0start q1

1

0

0

1

Definition 2.4. A finite automaton has a unique start state. Some of the states are accept states. We can label
the states q0, q1,
Definition 2.5. We can execute the automaton on any string w ∈ Σ∗.

• Begin in start state.
• For each symbol of w, follow the corresponding transition.
• If we end up in an accept state then accept, else reject.

Example 2.6. Simple example that accepts input if the input string is of even length.

q0start q1

0,1

0,1

The input 0110 is accepted, but the input 01100 is not.
Example 2.7. An automaton that only accepts input if the input is ϵ or the start of the input is the same as
the end of the input.

q0start

q1

q2

q3

q4

0

1

1

0

0

1

0

1

1

0

Definition 2.8. We define the language L(M) = {w |M accepts w}. We say that M recognizes the language
A if A = L(M).
Definition 2.9. A transition function δ : Q× Σ ⇒ Q defines the rules for moving between states.
Example 2.10. Consider the following state diagram, where the current state is q0.

q0start q1
1

If an automaton is at state q0 and reads the symbol 1, then it transitions to state q1. This is represented by
the transition function δ(q0, 1) = q1.

5

Definition 2.11. A deterministic finite automaton consists of a tuple M = (Q,Σ, δ, qstart, F) where:

• Q is a finite set called the states.
• Σ is a finite set called the alphabet.
• δ : Q× Σ ⇒ Q is the transition function.
• qstart ∈ Q is the start state.
• F ⊆ Q is the set of accept states (final states).

Definition 2.12. Let M = (Q,Σ, δ, qstart, F) be a finite automaton and let w ∈ Σ∗ be a string consisting of
symbols w = w1, . . . , wn with wi ∈ Σ. We define the extended transition function δ∗ : Q× Σ∗ ⇒ Q as:

• δ∗(q,w) = q if n = 0 (i.e., w = ϵ)
• δ∗(q,w) = δ(δ∗(q,w1 . . . wn, wn)) otherwise

Definition 2.13. A finite automaton M = (Q,Σ, δ, qstart, F) accepts w ∈ Σ∗ if δ∗(qstart, w) ∈ F and other-
wise M rejects w.

Definition 2.14. If A is the set of all strings that a finite automaton M accepts, then A is the language of
machine M and is denoted by L(M) = A. We say that M recognizes A or M accepts A.

Aside 2.15. Since the verb “accept” is also used to describe individual strings that finite automata accept, it
is preferable to use the verb “recognize” when describing the languages that finite automata accept.

Example 2.16. Consider the following finite automaton:

q0start q1 q2

0

1

1

0

0,1

We can formally describe this finite automaton as

1. Q = {q0, q1, q2}

2. Σ = {0, 1}

3. δ is described as
0 1

q0 q0 q1

q1 q2 q1

q2 q1 q1

4. q0 is the start state
5. F = {q1}

Definition 2.17. The language of an automaton M is L(M) = {w ∈ Σ∗ |M accepts w}.

Definition 2.18. A language L is regular if there exists some finite automaton M that recognizes L.
Finite automata yield a nice and simple algorithm to decide membership in regular languages:

• Fixed finite amount of memory.
• O(n) time, single pass over the input (streaming).

Aside 2.19. Our Goals

• Can we characterize regular languages?
• Are there languages that aren’t regular?

Example 2.20. A non-regular language would be L = {0n1n | n ≤ 0 ∈ Z}, since counting requires memory.

Example 2.21. Composing Regular Languages
Suppose A and B are regular languages. Can we compose them to form other regular languages?

6

• The union of regular languages A ∪ B

• The concatenation of regular languages A ◦ B
• The star of a regular language A∗

• The complement of a regular language Ā

• The intersection of regular languages A ∩ B

Definition 2.22. Regular languages are closed under the union, concatenation, star, complement, and inter-
section operations. If you apply these operations to regular languages, you get a regular language.

Theorem 2.23. If A is a regular language, then so is Ā.

Proof. Let M = (Q,Σ, δ, qstart, F) be an automaton that recognizes A. Let M ′ = Q,Σ, δ, qstart, F
′ = F̄.

M accepts w ⇐⇒ δ∗(qstart, w) ∈ F⇐⇒ δ∗(qstart, w) ̸∈ F ′

⇐⇒ M ′ does not accept w

Therefore M ′ recognizes Ā, and Ā is regular.

7

3 LECTURE 3

Example 3.1. Can we show that regular languages are closed under concatenation? Consider a simple
example.
Let A = {w |w contains a 0}, and let B = {w |w contains exactly two 1s}. Let a = 01010 ∈ A and b =
11 ∈ B. Then, a ◦ b = 0101011.
Yes, since 0101011 is in A ◦ B.

Aside 3.2. Our Plan
We define a more flexible notion of automata called non-deterministic finite automata (NFA).

• multiple options for the “next state”, guess which to take

To distinguish, we will call the standard automata deterministic finite automata (DFA).
Can always convert NFA to DFA.

Definition 3.3. A non-deterministic finite automata introduces transitions that can be labeled with ϵ, along
with states that can have an arbitrary number of outgoing transitions with each symbol.
The NFA accepts a string w if there is some way to execute the computation that ends in the accept state.

Example 3.4. Consider the following NFA:

q0start

q1 q2 q3

q4 q5 q6

ϵ

ϵ

0

0, 1

0

1

0, 1

1

Let w = 01100. There exists an execution that ends in an accept state: q0
ϵ→ q1

0→ q1
1→ q1

1→ q1
0→

q2
0→ q3. Thus, the NFA accepts w.

The L(M) for the above NFA M is L(M) = {w |w ends with 00 or 11}.

Definition 3.5. A non-deterministic finite automata consists of a tuple M = (Q,Σ, δ, qstart, F) where:

• Q is a finite set called the states.
• Σ is a finite set called the alphabet.
• δ : Q× (Σ ∪ {ϵ}) ⇒ P(Q) is the transition function.
• qstart ∈ Q is the start state.
• F ⊆ Q is the set of accept states (final states).

Definition 3.6. The ϵ-closure of a stateq is defined asE(q) = {q ′ : q ′ reachable from q via epsilon-transitions}.
The ϵ-closure of a set P ⊆ Q is defined as E(P) = ∪p∈PE(p).

Definition 3.7. The extended transition function d∗ : Q× Σ∗ → P(Q) is defined as follows:

• δ∗(q,w) = E(q) if |w| = 0

• δ∗(q,w) = E
(
∪p∈δ∗(q,w1,...,wn−1

δ(p,wn)
)

otherwise

Definition 3.8. An NFA M accepts a string w ∈ Σ∗ if δ∗(qstart, w) ∩ F ̸= ∅. Else we say that M rejects w.

8

Definition 3.9. The language of an NFA M is L(M) = {w ∈ Σ∗|M accepts w}.

Theorem 3.10. For any NFA N there exists a DFA D such that L(D) = L(N).

Corollary 3.10.1. A language L is regular if and only if there exists an NFA that recognizes L.

Theorem 3.11. If A and B are regular languages then so is A ∪ B.

Proof. Let MA and Mb be DFAs that recognizes the languages A and B respectively. We shall construct an
NFA N that recognizes A ∪ B.
Add a new start state to N. Add ϵ-transitions from the new start state to the states of MA and MB.
Since A ∪ B is recognized by an NFA, then A ∪ B is regular by 3.10.1.

Theorem 3.12. If A and B are regular languages then so is A ◦ B.

Proof. Let MA and Mb be DFAs that recognizes the languages A and B respectively. We shall construct an
NFA N that recognizes A ◦ B.
We add ϵ-transitions from the accepting states of MA to the start state of MB. Let the start state of N be
the start state of MA, and the accept states of N be the accept states of MB.
Since A ◦ B is recognized by an NFA, then A ◦ B is regular by 3.10.1.

Theorem 3.13. If A is a regular language then so is A∗.

Proof. Let MA be a DFA that recognizes the language A. We shall construct an NFA N that recognizes A∗.
Add a new start state which is also an accepting state. Add an ϵ-transition from the new start state to the
old start state. Add ϵ-transitions from the accept states to the old start state.

Theorem 3.14. If A and B are regular languages then so is A ∩ B.

Proof. Follows by De Morgan’s laws: A ∩ B = Ā ∪ B̄.

Aside 3.15. Intutition for NFA ⇒ DFA.

• NFA can have many valid computation sequences. After reading w, can reach a subset of the states Q.
• States of DFA correspond to subsets of NFA states.

– NFA states: QNFA = {Q1, . . . , Qn}

– DFA states: QDFA = P(QNFA)

Want: After reading w: DFA in state S ⇐⇒ NFA can reach states qi ∈ S.
We can set the start state of the DFA to be E(q0) where q0 is the start state of the NFA. We can set
the accept states of the DFA to be FDFA = {S | S ∩ FNFA ̸= ∅}. We make the transitions δDFA (S, x) =
E (Uq∈SδNFA(q, x)). Some states in the DFA are unreachable – we can delete them.
Summary: N = (Q,Σ, δNFA, qstart, F) is transformed to D = Q ′, Σ, δDFA, q

′
start, F

′.

9

4 LECTURE 4

Lemma 4.1. For all w ∈ Σ∗ : δ∗NFA(qstart, w) = δ∗DFA(q
′
start, w).

Proof. Proof by induction on length of w = w1, . . . , wn.

• Base case n = 0:

δ∗NFA(qstart, ϵ) = E(qstart)

= q ′
start

= δ∗start (q
′
start, ϵ)

• Induction:

δ∗NFA(qstart, w) = E
(
∪p∈δ∗

NFA(qstart,w1,...,w−1)δNFA(p,wn)
)

= E
(
∪p∈δ∗

DFA(q
′
start,w1,...,w−1)δNFA(p,wn)

)
= δDFA (δ∗DFA(q

′
start, w1, . . . , wn−1))

= δ∗DFA(q
′
start, w)

Theorem 4.2. For all w ∈ Σ∗, N accepts w ⇐⇒ D accepts w.

Proof.

N accepts w ⇐⇒ δ∗NFA(qstart, w) ∩ F ̸= ∅⇐⇒ δ∗DFA(q
′
start, w) ∩ F ̸= ∅⇐⇒ δ∗DFA(q
′
start, w) ∈ F ′

⇐⇒ D accepts w

Theorem 4.3. For any NFA N, there exists a DFA D such that L(D) = L(N).

Proof. Let N = (Q,Σ, δNFA, qstart, F) be an NFA. Let D = (Q ′, Σ, δDFA, q
′
start, F

′) be a DFA defined as:

• Q ′ = P(Q)

• q ′
start = E (qstart)

• F ′ = {S | S ∩ F ̸= ∅}
• δDFA(S, x) = E (∪q∈SδNFA(q, x))

By above lemma and theorem, so it follows that L(D) = L(N).

Aside 4.4. Ways to specify a regular language:

• Build a DFA or NFA
• Use the regular operations to build a “complex” language from “simple” ones.

Example 4.5. We can compose the following atomic expressions with operations to define regular expres-
sions.

• Atomic expressions: ∅, ϵ, Σ
• Operations: ∗, ◦,∪

Definition 4.6. R is a regular expression over an alphabet Σ if:

• It’s an atomic expression: R = ∅ or R = ϵ or R = a for some a ∈ Σ

10

• It’s composition: If R1, R2 are regular expressions then so is R = R1 ∪ R2 or R = (R1 ◦ R2) or R = R∗
1

regular expressions of complexity max(n1, n2) + 1.

Definition 4.7. The language of a regular expression R, denoted L(R), is defined inductively as:

• Atomic expression: L(∅) = ∅, L(ϵ) = ϵ, L(a) = a for a ∈ Σ

• Composed expression: If R1 and R2 are regular languages,

L(R1 ∪ R2) = L(R1) ∪ L(R2)

L(R1 ◦ R2) = L(R1) ◦ L(R2)

L(R∗
1) = L(R1)

∗

Aside 4.8. Notation is complex, we can simplify it.

• Omit parenthesis when unnecessary.
– Precedence: ∗ precedes ◦ precedes U

• Instead of R1 ◦ R2, write R1R2.
• Write Σ instead of ∪a∈Σa.
• Write R+ to denote RR∗.
• Write Rn to denote n concatenations of R.

Theorem 4.9. A language A is regular if and only if there is a regular expression R such that A = L(R).

Aside 4.10. Ways of specifying A is regular:

• DFAs
• NFAs
• Regular expressions

A is regular ⇐⇒ ∃ DFA D : A = L(D)⇐⇒ ∃ NFA N : A = L(N)⇐⇒ ∃ RE R : A = L(R)

11

5 LECTURE 5

Definition 5.1. A generalized nondeterministic finite automaton (GNFA) are NFAs wherein the transition
arrows may have any regular expressions as labels. It also has additional rules for convenience (a “special
form”):

• The start state has transition arrows going to every other state but no arrows coming in from any other
state.

• There is only a single accept state, and it has arrows coming in from every other state but no arrows
going to any other state.

• The start state and accept state are different states.
• Except for the start and accept state, one arrow goes from every state to every other state and also from

each state to itself.

Theorem 5.2. A DFA can be converted into a GNFA in the special form.

Aside 5.3. Not all languages are regular, for example L = {0n1n : n ≥ 0}. We cannot construct a DFA for
L, since it would need to remember how many zeroes it has seen.

Theorem 5.4. L = {0n1n : n ≥ 0} is not regular.

Proof. Assume by contradiction there is a DFA M = (Q,Σ, δ, F) that recognizes L. Let |Q| = p (the number
of states).
Let rk ∈ Q be the state M reaches after reading 0k. Then for some 0 ≤ i < j ≤ p we have ri = rj.
M must accept 0i1i ∈ L, thus M accepts 0j1i ̸∈ L.

Definition 5.5. Pumping Lemma (Slides Definition)
If L is a regular language, then:
There exists some integer p ≥ 0 for all strings w ∈ L of length |w| ≥ p such that there exists strings x, y, z
where w = xyz, for |y| > 0 and |xy| ≤ p where for all integers i ≥ 0 : xyiz ∈ L.
p is the pumping length.

Definition 5.6. Pumping Lemma (Textbook Definition)
If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of
length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i ≥ 0, xyiz ∈ A

2. |y| > 0

3. |xy| ≤ p

Aside 5.7. The Pumping Lemma states that all regular languages have a special property. If we can show
that a language does not have this property, then we are guaranteed that the language is not regular. The
property states that all strings can be “pumped” if they are at least as long as a certain value, called the
pumping length.

Aside 5.8. To use the pumping lemma to prove that a language L is not regular, first assume that L is regular
to obtain a contradiction. Then using the pumping lemma to guarantee the existence of a pumping length
p such that all strings of length p or greater in L cannot be pumped. Finally, demonstrate that s cannot be
pumped by considering all ways of dividing s into x, y and z, and, for each division, finding a value i where
xyiz ̸∈ L. The existence of s contradicts the pumping lemma if L were regular, hence L cannot be regular.

Theorem 5.9. L = {0n1n : n ≥ 0} is not regular.

Proof. Proof using the pumping lemma.

• Adversary picks integer p ≥ 0

• You pick w = 0p1p

12

• Adversary picks x, y, z. Since |xy| ≤ p, y contains just 0s.
• You pick i = 2, where xy2z = xyyz = 0p+|y|1p ̸∈ L. You win

Theorem 5.10. L = {ww : w ∈ {0, 1}∗} is not regular.

Proof. Proof using the pumping lemma.

• Adversary picks integer p ≥ 0

• You pick w = 0p10p1

• Adversary picks x, y, z. Since |xy| ≤ p, y contains just 0s
• You pick i = 2, since xy2z = 0p+|y|10p1 ̸∈ L

13

6 LECTURE 6

Aside 6.1. The big questions:

• Can we rigorously define a general notion of an algorithm?
• Are there problems that cannot be solved by any algorithm?

Aside 6.2. In 1928, David Hilbert asked for an “algorithm” that takes in as input a mathematical statement
and decides whether the statement is true or false. There was shown to be no algorithm:

• Kurt Gödel relied on recursive functions

• Alonzo Church developed λ-calculus
• Alan Turing developed the Turing Machine

All these definitions are equivalent.

Aside 6.3. Our Plan:

• Define Turing Machines
• Show Turing Machines are powerful enough to implement any “reasonable algorithm”.
• Show that some problems are “undecidable”.

Definition 6.4. (Informal) A Turing Machine initially has an infinite memory tape, containing the input and
followed by “blanks”, with the tape head starting at the left-most position. In each step, the machine can
overwrite the symbol under the tape head and move the tape left/right. At any point in time, the machine
can halt the computation and accept or reject.

Aside 6.5. The Turing Machine is like a DFA. Transitions read or write under the tape head, and can move
the tape head left or right. There are special accept and reject states. If the computation enters such a state,
it immediately halts.

Definition 6.6. A Turing Machine consists of a tuple M =
{
Q,Σ, Γ, δ, qstart, qaccept, qreject

}
where:

• Q is a finite set called the states.
• Σ is a input alphabet.
• Γ is a tape alphabet such that Σ ⊆ Γ and Γ contains a special blank symbol which is not in Σ.
• qstart ∈ Q is the start state.
• qaccept ∈ Q is the accept state.
• qreject ∈ Q is the reject state.
• δ : Q ′ × Γ → Q× Γ × {L, R} is the transition function, where Q ′ = Q− qaccept, qreject.

Definition 6.7. Let M = Q,Σ, Γ, δ, qstart, qaccept, qreject be a Turing Machine.
A configuration of M is a tuple C = (u, q, v) such that u, v ∈ Γ∗ and q ∈ Q.
A configuration C yields C ′ if M goes from C to C ′ in 1 step.
A start configuration of M on input w is qstartw.
An accepting configuration is one where the state is qaccept.

Definition 6.8. Let M = Q,Σ, Γ, δ, qstart, qaccept, qreject be a Turing Machine.
M accepts w if there is a sequence of configurations C1, C2, · · · , Cn such that:

• C1 is the start configuration of M on input w
• Ci yields Ci+1 for i = 1, . . . , n− 1

• Cn is an accepting state configuration

Definition 6.9. A Turing Machine M on input w can either accept, reject, or loop. Accepting or rejecting is
known as halting.

14

Definition 6.10. For a Turing Machine M, we define L(M) = {w |M accepts w}. Say that M recognizes
the language L(M).

Definition 6.11. We say that M decides L if

• M accepts w ∈ L and M rejects w ̸∈ L.
• Equivalently: M recognizes L and M always halts.

Definition 6.12. A language L is recognizable if there is some turing machine that recognizes L.

Definition 6.13. A language L is decidable if there is some turing machine that decides L.

Definition 6.14. A tape-head level description is a way to describe how the tape-head should walk across
the tape and what it should write.

15

7 LECTURE 7

Example 7.1. Consider L = {w#w : w ∈ 0, 1∗}. Let’s give a tape-head level description for it.

• Check input is of form 0, 1∗#0, 1∗, otherwise reject.
• Walk tape-head from left to right:

– If everything crossed out other than #, accept.
– Find first non crossed out b ∈ 0, 1 on the left of # and the first non crossed out b ′ ∈ 0, 1 to the

right of #
∗ If one of b or b ′ doesn’t exist, reject
∗ If b ̸= b ′, reject

– Return tape-head all the way to the left, and repeat

Aside 7.2. Can also consider Turing Machines that output more than just “accept/reject”. Define the output
of a turing machine as the contents of its tape when it enters an accept/reject state.

Definition 7.3. A turing machine M computes a function f : Σ∗ → Σ∗ if on every input w ∈ Σ∗ the turing
machine halts and its tape contains f(w). We say that f is computable if some turing machine M computes
it.
Can check that basic functions such as addition, multiplication, division, etc. are computable.

Aside 7.4. We want to show that adding various features to turing machines does not make them any more
powerful. We can build a compiler that takes a turing machine with additional features and converts the
turing machine to a standard turing machine.

Aside 7.5. We can create a compiler from a multi-tape turing machine to a one tape turing machine.

• Store contents of all tapes sequentially on a single tape separated by #.
• Remember tape-head positions by storing an “underlined” version of tape symbols.
• Each step of multi-tape turing machine is simulated by scanning entire tape of a single-tape turing

machine.
• Might need more space on one of the tapes – in that case shift everything over by 1 to the right.

Example 7.6. Show that there is a turing machine that computes binary addition for a and b.

• Use two extra tapes. Copy a to the tape t1, b to t2 in reverse order and clear the main tape.
• Return all tape heads to the left. Remember 1 bit for the carry.
• Add two bits under tape-heads 1 and 2 plus carry. Place result modulo 2 on the main tape, update the

carry. Move all tape heads one right. Repeat until values under tape-head 1 and 2 are both blank.
• Reverse contents of main tape.

Example 7.7. Let’s define a random access turing machine, that can read and write to arbitrary locations in
memory without scanning a tape. Memory is modeled as an infinite array R. We shall show how to compile
this to a standard Turing Machine.

• In addition to standard tape that contains the input the turing machine has location and value tapes.
• There is a special write instruction which sets R[location] = value using content of tapes.
• There is a read transition which sets the contents of the value tape to R[location].

TODO: Write the compiler (I’m eating).

Definition 7.8. Church-Turing Thesis

Any “algorithm” can be implemented on a Turing Machine.

• This is not a formal statement and hence cannot prove or disprove it.
• Turing Machines capture our informal understanding of what an algorithm is.

16

Aside 7.9. From now on, to describe a turing machine, we can just describe an algorithm using high-level
pseudocode. It should be sufficiently clear that a human can follow, and we should be confident enough in it
that we can convert it to a turing machine.

Aside 7.10. Inputs to turing machines are strings, but we can encode anything as a string.

Definition 7.11. For some object O, let ⟨O⟩ denote the encoding of O as a string.

Definition 7.12. There is a turing machine MUNIV(⟨M⟩ , w) that can run any other turing machine. It takes
in an input of any turing machine M and any string w. It then runs M on w.

• If M accepts w, then MUNIV(⟨M⟩ , w) accepts.
• If M rejects w, then MUNIV(⟨M⟩ , w) rejects.
• If M loops on w, then MUNIV(⟨M⟩ , w) will also loop.

Think of turing machines as algorithms and a universal turing machine as a general purpose computer.

Definition 7.13. A non-deterministic turing machine has multiple possible actions the turing machine can
take at any point in time. Its transition function is δ : Q × Γ → P(Q × Γ × {L, R}). If in state q and read
symbol a there are several possible options for the next state, write symbol, and direction.

• The turing machine accepts if there exists some way to run the computation that ends in an accept state.
• The turing machine rejects if all computations are rejecting.

Aside 7.14. Why turing machines?

• Simplicity: mathematical definitions should be simple.
• Locality: will be useful in a few proofs.

17

	LECTURE 1
	LECTURE 2
	LECTURE 3
	LECTURE 4
	LECTURE 5
	LECTURE 6
	LECTURE 7

